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1. Introduction 

Hyperspectral Image (HSI) is an image cube with a 

high dimensionality, where the pixel intensities for 

each band in the HSI, which has large dimensions, are stored 

[1]. Using a variety of contiguous spectral bands, 

hyperspectral imaging represents remote sensing technology 

that records electromagnetic radiation dispersed or emitted 

from a scene. Hyperspectral data contains hundreds of 

spectral bands, as opposed to the three bands used by 

conventional RGB imaging. Each band represents a specific 

range of wavelengths, giving each pixel in the picture a 

thorough spectral description [2].  

HSI classification refers to the procedure of precisely 

forecasting the diverse pixel values linked to the different 

classes within a remotely sensed hyperspectral image (HSI). 

The rich information provided by a hyperspectral picture 

offers considerable benefits to identifying objects and 

classification in a variety of disciplines, such as agriculture, 

astronomy, biomedical imaging [3], etc., In addition to 

locating specific soil patches, HSIs can distinguish between 

the various soil minerals. This level of specificity has several 

uses, including astronomy for the study of celestial bodies 

and agriculture, where it helps with accurate farming. 

Knowing that HSI comprise both spectral and spatial 

information is a significant feature [4]. 

The installation of imaging spectrometers at various 

locations is essential for capturing hyperspectral images. In 

order to get electromagnetic wave pictures spanning the 

near-infrared, visible, ultraviolet, and mid-infrared spectra, 

imaging spectroscopy was developed in the 1980s [5]. 

Because imaging spectrometers may collect data in several 

closely spaced and extremely tiny bands, in this particular 

wavelength range, each pixel has the capacity to capture the 

whole spectrum of either reflected or emitted light [6]. 

Consequently, the excellent spectral accuracy, numerous 

spectral bands, and availability of data that define 

hyperspectral pictures, there are several techniques for 

processing hyperspectral remote sensing pictures, but the 

ones that are most frequently used include transformation, 

image correction, dimensionality reduction, noise 

mitigation, and classification [7]. 

Deep learning, specifically neural networks, has 

revolutionized various domains of machine learning by 

automatically learning hierarchical representations from 

data. Due to the intrinsic sparsity of the data, conventional 

deep learning techniques might not be completely 

appropriate for the hyperspectral domain [8]. The 

classification of HSI may not be considerably impacted by 

most spectral bands, which might result in less-than-ideal 

performance and inefficient computation [9]. In light of 

these challenges, the primary objective of this study is to 

integrate a sparse deep learning model into the process of 

classifying hyperspectral images. We want to improve the 

precision, effectiveness, and interpretability of hyperspectral 

picture classification by using the abilities of sparse auto 

encoders, dropout, and related approaches. In this research, 

we want to provide a new perspective on how sparse 

representations might improve the performance of 

hyperspectral analysis, bridging the gap between the 

complexity of hyperspectral data and the strengths currently 

available deep learning architecture. 

1.1 Hyperspectral Image Challenges 

There are several imaging bands in hyperspectral images, 

which improve object resolution, especially through higher 

spectral resolution [10]. However, classification of 

hyperspectral images is severely restricted by the intrinsic 
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high dimensionality of hyperspectral data and the spectral 

similarity of mixed pixels [11]. As noted in several research 

the below challenges cover a range of problems that require 

solutions. 

1. High Dimensionality: Hundreds of spectral bands 

are comprised in Hyperspectral data, resulting in a 

high-dimensional dataset. Managing and 

interpreting this data is complex [12]. 

2. Missing Labeled Samples: While collecting 

hyperspectral image data is relatively easy, 

obtaining accurate labels for the images is 

extremely challenging, leading to a scarcity of 

labeled samples for classification [13]. 

3. Image Quality: During hyperspectral data 

acquisition, factors like noise and background 

interference may compromise data quality, directly 

impacting the accuracy of image classification [14]. 

2. Related Work 

The primary objective of HSI classification is to accurately 

assign a pixel, based on multispectral data, to one of several 

predefined categories [15]. However, achieving this goal 

presents significant challenges due to the limited number of 

training samples and the intricate spectral patterns associated 

with each pixel. Numerous classifiers have been proposed 

for HSI classification such as random field-based methods, 

artificial neural networks, Support vector machines [16]. In 

addition to these, deep learning-based algorithms have been 

developed, which, while computationally intensive, have 

shown impressive results in hyperspectral classification 

[17]. Deep learning techniques have significantly improved 

hyperspectral classification outcomes, albeit at the cost of 

substantial computational resources. Convolutional neural 

networks (CNNs) are commonly employed for the 

classification of hyperspectral images (HSIs). Many 

research efforts focus on the extraction of both spectral and 

spatial features using cascades of networks [18]. For 

example, one research [19] extracted the spatial and spectral 

features, using two consecutive ResNets, while another 

combines CNN and LSTM models for the extraction of 

spatial and spectral features, respectively [20]. 

The processing of hyperspectral images (HSIs) has seen the 

emergence of the Sparse Representation (SR) methodology 

as a very successful method. It uses the LMM mathematical 

framework to handle the classification problem in HSIs [21]. 

Super-Resolution (SR) is widely embraced in hyperspectral 

image (HSI) processing due to its robust theoretical 

foundation and its proven efficacy in various domains, such 

as signal processing and machine vision applications [22]. 

Each pixel in an image captured with HSI may be seen as a 

vector of spectral reflectance values spanning different 

wavelengths. The mathematical formula for these vectors is 

x_i ∈ ℝ^n, where 'n' is the number of spectral bands. Finding 

a sparse representation of these vectors—one in which most 

of the components in x_i are 0 or almost zero—is the 

objective [23]. 

2.1 Sparse Deep Learning 

Sparse deep learning techniques offer promising solutions to 

address the above. Sparse deep learning leverages the 

inherent sparsity present in hyperspectral data and can 

significantly benefit hyperspectral image classification in the 

following ways: 

1. Efficient Feature Representation: Sparse deep 

learning models can automatically discover and 

represent relevant features from hyperspectral data, 

effectively reducing dimensionality and 

computational demands. Sparse representations 

allow the network to focus on essential spectral 

bands, resulting in more efficient processing [24]. 

2. Enhanced Classification Accuracy: By exploiting 

the sparsity of hyperspectral data, sparse deep 

learning models can potentially improve 

classification accuracy, especially in scenarios 

where traditional methods struggle to discern subtle 

spectral variations. 

3. Robustness to Noise: Sparse representations can 

help mitigate the effects of noise and outliers, 

making sparse deep learning models more robust in 

noisy hyperspectral environments [25]. 

The concept of sparse neural networks has gained traction in 

recent years, particularly in the context of high-dimensional 

data analysis. Pertinent research studies have worked into 

the realm of sparse neural networks and their diverse 

applications across multiple domains, encompassing the 

field of hyperspectral image classification. 

3. Methodology 

The methodology of our work is briefly explained in this 

section. Following flowchart of the proposed work which 

has been followed for sparse deep learning and 

Hyperspectral image classification. 

 

Figure.1. Flowchart of proposed method 

3.1 Hyperspectral Images Dataset 

In this research, we made use of two established 

hyperspectral datasets: the Indian Pines dataset and the Pavia 

University dataset. These datasets are highly regarded and 

commonly utilized in the realm of remote sensing and 

hyperspectral image analysis, due to their diverse spectral 

properties and clearly defined land cover classes [26]. 

i. The Indian Pines dataset: The data was acquired 

using an Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) sensor, covering an 

agricultural area located in Indiana, USA. It 
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comprises 145x145 pixels, each with a spectral 

dimension of 224 bands. The dataset encompasses 

16 distinct land cover classes, ranging from various 

crops to urban areas and natural terrains. 

 

ii. Pavia University Dataset: This dataset, gathered 

over Pavia, Italy, was captured utilizing Reflective 

Optics System Imaging Spectrometer (ROSIS) 

sensors. It comprises 610x340 pixels and contains 

data from 103 spectral bands. The dataset 

encompasses nine distinct land cover classes, 

spanning urban, agricultural, and natural 

environments. 

3.2 Preprocessing 

i. Data Standardization: Prior to model training, 

standardization was performed on the hyperspectral 

data. As an integral component of the pre-

processing phase, data underwent standardization, 

involving the deduction of its mean value and 

subsequent scaling for achieving unit variance. 

Standardization is crucial to ensure that spectral 

bands are on a consistent scale and exhibit 

comparable variance, facilitating the training of 

deep learning models [27]. 

 

ii. Conversion to Sparse Matrices: Hyperspectral 

data inherently contain a high degree of redundancy 

and irrelevance across spectral bands. To harness 

the benefits of sparse deep learning, we converted 

the standardized hyperspectral data into sparse 

matrices. This conversion reduced memory 

consumption and computational overhead while 

preserving essential spectral information. 

3.3 Sparse Deep Learning 

Sparse representation is used to address the inherent 

dimensionality and computational complexity challenges in 

hyperspectral data. By focusing on pertinent spectral bands 

and eliminating redundant information, sparse 

representations enhance model efficiency and its ability to 

discern discriminative spectral features [28]. 

The selection of LSTM as the core architectural component 

stems from its ability to model temporal dependencies within 

sequential data, which aligns with the sequential nature of 

hyperspectral bands over time. LSTM offers a competitive 

advantage for hyperspectral sequences [29]. 

Our proposed sparse deep learning model leverages Long 

Short-Term Memory (LSTM) networks, a type of recurrent 

neural network (RNN) architecture well-suited for 

sequential data analysis. The model architecture is detailed 

as follows: 

i. Input Layer: The input layer accommodates the 

sparse representations of hyperspectral data. It is 

designed to accept the sparse matrices obtained 

during preprocessing. 

 

ii. LSTM Layer: The LSTM layer includes a variable 

count of LSTM units, enabling the model to grasp 

temporal relationships and patterns within 

hyperspectral data. The utilization of LSTM units 

is motivated by their capacity to model sequential 

and time-series information, which aligns with the 

sequential nature of hyperspectral bands. 

 

iii. Dropout Layer: We've included a dropout layer 

with a predetermined dropout rate to reduce the risk 

of overfitting. A portion of neurons are randomly 

deactivated during training as part of this 

regularization technique, which eventually 

improves the model's classification. 

 

iv. Dense Layer: To capture intricate relationships and 

features within the hyperspectral data, a dense layer 

is added, which utilizes the Rectified Linear Unit 

(ReLU) activation function. 

 

v. Output Layer: The output layer utilizes the softmax 

activation function, which is responsible for 

producing class probabilities used in hyperspectral 

image classification. Each output node corresponds 

to a distinct land cover class. 

Table.1. Hyper Parameters used in the model and its values 

Hyper Parameters Indian Pines Pavia 

University 

Number of LSTM 

layers 

2 2 

Activation 

Function 

ReLU, Softmax ReLU, 

Softmax 

Optimizer Adam Adam 

Epochs 50 20 

Loss Function Categorical 

Cross-Entropy 

Categorical 

Cross-Entropy 

Learning Rate 0.001 0.001 

Batch Size 64 64 

 

3.4 Classification 

The trained sparse deep learning model is applied to the 

preprocessed hyperspectral data to obtain class predictions. 

For each pixel, the model output a probability distribution 

across the available land cover classes. Assigning each pixel 

in the hyperspectral picture to a particular land cover class 

or group is known as hyperspectral classification. Once all 

pixels have been assigned class labels, a classification map 

is created, where each pixel's color or value corresponds to 

its assigned land cover class.  

4. Results and Discussion 

In our research, we thoroughly evaluated the proposed 

sparse deep learning model utilizing hyperspectral datasets 

from Indian Pines and Pavia University and rigorously 

evaluated its performance. 

4.1 Indian Pines 

When used on the Indian Pines dataset, the sparse deep 

learning model achieved an accuracy rate of 91%. This high 

overall accuracy indicates the model's ability to classify land 

cover categories effectively. 
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Figure.2. Training accuracy graph for Indian Pines dataset 

 

Figure.3. Training loss graph for Indian Pines dataset 

To present the classification performance comprehensively, 

we provide the cassification report below: 

 

Figure.4. Classification report for Indian Pines dataset 

 

 

Figure.5. Obtained Classification Map for Indian Pines 

4.2 Pavia University 

On the Pavia University dataset, the model showed accuracy 

of 89%. This demonstrates the model's robustness in 

handling diverse land cover types. 

 

Figure.6. Training accuracy graph for Pavia University data 

 

Figure.7. Training loss graph for Pavia University dataset 

To present the classification performance comprehensively, 

we provide the cassification report below: 
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Figure.8. Classification report for Pavia University dataset 

 

Figure.9. Obtained Classification Map for Pavia University 

The results of both the datasets are shown in the table 

below:  

Table.2. Obtained Training and Testing accuracies for both 

datasets. 

Results  Indian Pines Pavia University 

No. of Epochs 50 20 

Training 

Accuracy 

91% 89% 

Training Loss 0.26 0.26 

Testing 

Accuracy 

88% 84% 

Testing Loss 0.33 0.41 

5. Conclusion 

In this paper, our proposed methodology encompasses a 

series of meticulous data preprocessing steps, the 

construction of an LSTM-based sparse deep learning model, 

and the implementation of regularization techniques and 

optimization strategies. This approach is designed to 

enhance classification accuracy, effectively manage high-

dimensional hyperspectral data, and ultimately advance the 

capabilities of hyperspectral image analysis in remote 

sensing applications. 

The experimental results, drawn from two benchmark 

datasets and comparative studies, demonstrate the better 

results of the Sparse Representation based LSTM 

classification method over traditional technique and even 

standalone LSTM architectures. Our proposed model 

provides a better result having 91% accuracy for Indian 

pines dataset and 89% accuracy for Pavia university dataset.  
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